Latent representations¶
Classes defining user and item latent representations in factorization models.
- 
class spotlight.factorization.representations.BilinearNet(num_users, num_items, embedding_dim=32, user_embedding_layer=None, item_embedding_layer=None, sparse=False)[source]¶
- Bilinear factorization representation. - Encodes both users and items as an embedding layer; the score for a user-item pair is given by the dot product of the item and user latent vectors. - Parameters
- num_users (int) – Number of users in the model. 
- num_items (int) – Number of items in the model. 
- embedding_dim (int, optional) – Dimensionality of the latent representations. 
- user_embedding_layer (an embedding layer, optional) – If supplied, will be used as the user embedding layer of the network. 
- item_embedding_layer (an embedding layer, optional) – If supplied, will be used as the item embedding layer of the network. 
- sparse (boolean, optional) – Use sparse gradients.