Source code for spotlight.sequence.implicit

"""
Models for recommending items given a sequence of previous items
a user has interacted with.
"""

import numpy as np

import torch

import torch.optim as optim

from spotlight.helpers import _repr_model
from spotlight.losses import (adaptive_hinge_loss,
                              bpr_loss,
                              hinge_loss,
                              pointwise_loss)
from spotlight.sequence.representations import (PADDING_IDX, CNNNet,
                                                LSTMNet,
                                                MixtureLSTMNet,
                                                PoolNet)
from spotlight.sampling import sample_items
from spotlight.torch_utils import cpu, gpu, minibatch, set_seed, shuffle


[docs]class ImplicitSequenceModel(object): """ Model for sequential recommendations using implicit feedback. Parameters ---------- loss: string, optional The loss function for approximating a softmax with negative sampling. One of 'pointwise', 'bpr', 'hinge', 'adaptive_hinge', corresponding to losses from :class:`spotlight.losses`. representation: string or instance of :class:`spotlight.sequence.representations`, optional Sequence representation to use. If string, it must be one of 'pooling', 'cnn', 'lstm', 'mixture'; otherwise must be one of the representations from :class:`spotlight.sequence.representations` embedding_dim: int, optional Number of embedding dimensions to use for representing items. Overridden if representation is an instance of a representation class. n_iter: int, optional Number of iterations to run. batch_size: int, optional Minibatch size. l2: float, optional L2 loss penalty. learning_rate: float, optional Initial learning rate. optimizer_func: function, optional Function that takes in module parameters as the first argument and returns an instance of a PyTorch optimizer. Overrides l2 and learning rate if supplied. If no optimizer supplied, then use ADAM by default. use_cuda: boolean, optional Run the model on a GPU. sparse: boolean, optional Use sparse gradients for embedding layers. random_state: instance of numpy.random.RandomState, optional Random state to use when fitting. num_negative_samples: int, optional Number of negative samples to generate for adaptive hinge loss. Notes ----- During fitting, the model computes the loss for each timestep of the supplied sequence. For example, suppose the following sequences are passed to the ``fit`` function: .. code-block:: python [[1, 2, 3, 4, 5], [0, 0, 7, 1, 4]] In this case, the loss for the first example will be the mean loss of trying to predict ``2`` from ``[1]``, ``3`` from ``[1, 2]``, ``4`` from ``[1, 2, 3]`` and so on. This means that explicit padding of all subsequences is not necessary (although it is possible by using the ``step_size`` parameter of :func:`spotlight.interactions.Interactions.to_sequence`. """ def __init__(self, loss='pointwise', representation='pooling', embedding_dim=32, n_iter=10, batch_size=256, l2=0.0, learning_rate=1e-2, optimizer_func=None, use_cuda=False, sparse=False, random_state=None, num_negative_samples=5): assert loss in ('pointwise', 'bpr', 'hinge', 'adaptive_hinge') if isinstance(representation, str): assert representation in ('pooling', 'cnn', 'lstm', 'mixture') self._loss = loss self._representation = representation self._embedding_dim = embedding_dim self._n_iter = n_iter self._learning_rate = learning_rate self._batch_size = batch_size self._l2 = l2 self._use_cuda = use_cuda self._sparse = sparse self._optimizer_func = optimizer_func self._random_state = random_state or np.random.RandomState() self._num_negative_samples = num_negative_samples self._num_items = None self._net = None self._optimizer = None self._loss_func = None set_seed(self._random_state.randint(-10**8, 10**8), cuda=self._use_cuda) def __repr__(self): return _repr_model(self) @property def _initialized(self): return self._net is not None def _initialize(self, interactions): self._num_items = interactions.num_items if self._representation == 'pooling': self._net = PoolNet(self._num_items, self._embedding_dim, sparse=self._sparse) elif self._representation == 'cnn': self._net = CNNNet(self._num_items, self._embedding_dim, sparse=self._sparse) elif self._representation == 'lstm': self._net = LSTMNet(self._num_items, self._embedding_dim, sparse=self._sparse) elif self._representation == 'mixture': self._net = MixtureLSTMNet(self._num_items, self._embedding_dim, sparse=self._sparse) else: self._net = self._representation self._net = gpu(self._net, self._use_cuda) if self._optimizer_func is None: self._optimizer = optim.Adam( self._net.parameters(), weight_decay=self._l2, lr=self._learning_rate ) else: self._optimizer = self._optimizer_func(self._net.parameters()) if self._loss == 'pointwise': self._loss_func = pointwise_loss elif self._loss == 'bpr': self._loss_func = bpr_loss elif self._loss == 'hinge': self._loss_func = hinge_loss else: self._loss_func = adaptive_hinge_loss def _check_input(self, item_ids): if isinstance(item_ids, int): item_id_max = item_ids else: item_id_max = item_ids.max() if item_id_max >= self._num_items: raise ValueError('Maximum item id greater ' 'than number of items in model.')
[docs] def fit(self, interactions, verbose=False): """ Fit the model. When called repeatedly, model fitting will resume from the point at which training stopped in the previous fit call. Parameters ---------- interactions: :class:`spotlight.interactions.SequenceInteractions` The input sequence dataset. """ sequences = interactions.sequences.astype(np.int64) if not self._initialized: self._initialize(interactions) self._check_input(sequences) for epoch_num in range(self._n_iter): sequences = shuffle(sequences, random_state=self._random_state) sequences_tensor = gpu(torch.from_numpy(sequences), self._use_cuda) epoch_loss = 0.0 for minibatch_num, batch_sequence in enumerate(minibatch(sequences_tensor, batch_size=self._batch_size)): sequence_var = batch_sequence user_representation, _ = self._net.user_representation( sequence_var ) positive_prediction = self._net(user_representation, sequence_var) if self._loss == 'adaptive_hinge': negative_prediction = self._get_multiple_negative_predictions( sequence_var.size(), user_representation, n=self._num_negative_samples) else: negative_prediction = self._get_negative_prediction(sequence_var.size(), user_representation) self._optimizer.zero_grad() loss = self._loss_func(positive_prediction, negative_prediction, mask=(sequence_var != PADDING_IDX)) epoch_loss += loss.item() loss.backward() self._optimizer.step() epoch_loss /= minibatch_num + 1 if verbose: print('Epoch {}: loss {}'.format(epoch_num, epoch_loss)) if np.isnan(epoch_loss) or epoch_loss == 0.0: raise ValueError('Degenerate epoch loss: {}' .format(epoch_loss))
def _get_negative_prediction(self, shape, user_representation): negative_items = sample_items( self._num_items, shape, random_state=self._random_state) negative_var = gpu(torch.from_numpy(negative_items), self._use_cuda) negative_prediction = self._net(user_representation, negative_var) return negative_prediction def _get_multiple_negative_predictions(self, shape, user_representation, n=5): batch_size, sliding_window = shape size = (n,) + (1,) * (user_representation.dim() - 1) negative_prediction = self._get_negative_prediction( (n * batch_size, sliding_window), user_representation.repeat(*size)) return negative_prediction.view(n, batch_size, sliding_window)
[docs] def predict(self, sequences, item_ids=None): """ Make predictions: given a sequence of interactions, predict the next item in the sequence. Parameters ---------- sequences: array, (1 x max_sequence_length) Array containing the indices of the items in the sequence. item_ids: array (num_items x 1), optional Array containing the item ids for which prediction scores are desired. If not supplied, predictions for all items will be computed. Returns ------- predictions: array Predicted scores for all items in item_ids. """ self._net.train(False) sequences = np.atleast_2d(sequences) if item_ids is None: item_ids = np.arange(self._num_items).reshape(-1, 1) self._check_input(item_ids) self._check_input(sequences) sequences = torch.from_numpy(sequences.astype(np.int64).reshape(1, -1)) item_ids = torch.from_numpy(item_ids.astype(np.int64)) sequence_var = gpu(sequences, self._use_cuda) item_var = gpu(item_ids, self._use_cuda) _, sequence_representations = self._net.user_representation(sequence_var) size = (len(item_var),) + sequence_representations.size()[1:] out = self._net(sequence_representations.expand(*size), item_var) return cpu(out).detach().numpy().flatten()